Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition
نویسندگان
چکیده
In this paper, we carry out two experiments on the TIMIT speech corpus with bidirectional and unidirectional Long Short Term Memory (LSTM) networks. In the first experiment (framewise phoneme classification) we find that bidirectional LSTM outperforms both unidirectional LSTM and conventional Recurrent Neural Networks (RNNs). In the second (phoneme recognition) we find that a hybrid BLSTM-HMM system improves on an equivalent traditional HMM system, as well as unidirectional LSTM-HMM.
منابع مشابه
Framewise phoneme classification with bidirectional LSTM and other neural network architectures
In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise phoneme classification, using the TIMIT database. Our main findings are that bidirectional networks outperform unidirectional ones, a...
متن کاملSound Signal Processing with Seq2Tree Network
Long Short-Term Memory (LSTM) and its variants have been the standard solution to sequential data processing tasks because of their ability to preserve previous information weighted on distance. This feature provides the LSTM family with additional information in predictions, compared to regular Recurrent Neural Networks (RNNs) and Bag-of-Words (BOW) models. In other words, LSTM networks assume...
متن کاملRecognition of spontaneous conversational speech using long short-term memory phoneme predictions
We present a novel continuous speech recognition framework designed to unite the principles of triphone and Long ShortTerm Memory (LSTM) modeling. The LSTM principle allows a recurrent neural network to store and to retrieve information over long time periods, which was shown to be well-suited for the modeling of co-articulation effects in human speech. Our system uses a bidirectional LSTM netw...
متن کاملAcoustic Models Based on Non-uniform Segments and Bidirectional Recurrent Neural Networks
In this paper a new framework for acoustic model building is presented. It is based on non-uniform segment models, which are learned and scored with a time bidirectional recurrent neural network. While usually neural networks in speech recognition systems are used to estimate posterior "frame to phoneme" probabilities, they are used here to estimate directly "segment to phoneme" probabilities, ...
متن کاملAcoustic model building based on non-uniform segments and bidirectional recurrent neural networks
In this paper a new framework for acoustic model building is presented. It is based on non-uniform segment models, which are learned and scored with a time bidirectional recurrent neural network. While usually neural networks in speech recognition systems are used to estimate posterior "frame to phoneme" probabilities, they are used here to estimate directly "segment to phoneme" probabilities, ...
متن کامل